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In this Supporting Information, we provide (1) details about the experimental setup and the
repeatability of the experiments; (2) the derivation of the force relaxation relation during dynamic
postbuckling; (3) the post-buckling solutions with a transient force relaxation; and (4) additional
information about the MD-inspired structural simulations.

PACS numbers: find pacs

EXPERIMENTAL SETUP AND REPEATABILITY

The experimental setup is illustrated in Fig. 1 by
one out of the many impact tests we made. The wood
beam, clamped at one side, is impacted longitudinally
by a heavy (much heavier than the beam itself so that
the transfer of inertia is made at constant velocity) steel
cylinder falling by its own weight. The beam extremity on
the impactor side is guided and the impact results in an
effective shortening of the available distance between the
extremities of the beam. While the direction of the beam
deflection is initially random from one test to the other,
the distortions wavelengths of the beam, and progressive
coarsening are deterministic, perfectly repeatable from
one test to the other. The same setup, and observations,
apply when the beam is made of dry, brittle pasta.

GEOMETRIC FORCE RELAXATION MODEL

Consider the beam bending differential equation for
lateral deflection, ξ (x, t), of a beam (length `, cross section
A, moment of geometric inertia I = Ad2, geometric radius
of gyration d =

√
I/A, mass density ρ, Young’s modulus

E), subject to a compressive force P :

ρAξ̈ +
∂2

∂x2
(EIξ′′) +

∂

∂x
(Pξ′) = 0 (1)

with overdot denoting time derivative, and prime deriva-
tive along the rod’s axis x. The force P is generated by
an impact of a projectile (project velocity U0) hitting one
end of the rod, and propagating at the speed of sound,
c =

√
E/ρ, along the rod’s axis to the other end. Con-

sidering ξ ∼ exp (ikx− iωt), we readily find that force
P will entail an instability (ω → 0) associated with a
wavenumber kc = k (ω → 0) =

√
P/EI. Hence, as the

force decreases, it is recognized that the buckling shifts

FIG. 1: Sketch of the experimental setup and sequence of
images of the distorted beam after impact. The 720 cm long
beam, made of hard wood, is clamped at one extremity and al-
lowed to slide during impact at the other extremity, after what
it remains clamped. The sequence of images (snapshot taken
at t= 0 ; 0.5 ms ; 1 ms ; 2.5 ms ; 7.5 ms ; 12.5 ms ; 25 ms ; 50
ms) reveals the development of the short wavelength buckling
at short times, and the subsequent coarsening dynamics.

from higher wavenumbers to lower wavenumbers. This
motivates the development of a first-order geometric force
relaxation mechanism model.

Consider thus an instability of the form ξ (x) ∼
ξk sin (kx) along x ∈ [0, `− δ`], with ξk some magnitude,
and δ` the shortening induced by the impact of the projec-
tile. If the force P was zero, length preservation requires:

` =

∫ `−δ`

0

√
1 + ξ′2dx ≈

∫ `−δ`

0

(
1 +

1

2
ξ′2
)
dx (2)

= (`− δ`)
(

1 + (ξkk)
2
)

We thus assume that such a relation equally holds when
the force is non zero producing an axial shortening of the



2

rods length,−ε` = P (k) `/EA, in the form ` (1− ε) =

(`− δ`)
(

1 + (ξkk)
2
)

. This consideration readily provides

a link between the residual force, P (k), and the wavenum-
ber, k, in the form:

P (k)

EA
=
δ`

`
− (ξkk)

2

(
1− δ`

`

)
≈ P0

EA

(
1− (ξkk)

2

δ`/`

)
(3)

where P0 = EA δ`/` is the initial buckling force [1].
The beam deflection slope ξkk ∼

√
δ`/`, varies between

ξkk → 0 and (ξkk)
2 → δ`/` for a complete force relaxation

(i.e. P (k) → 0). Otherwise said, in the post-buckling
regime, the force relaxation mechanism involves, from
pure geometry, the increase in time of the instability
magnitude ξk; The initial growth is such that ξk (k) ∼
ξ0tk/τ where τ is the buckling instability timescale τ ∼
d/U0 [1]. Time tk thus represents the time at which mode
k determines the force P (k):

tk ∼ τ
√
δ`/`

ξ0k
(4)

Incorporating this tk ∼ k−1 relation in a continuous fash-
ion into expression (3) yields the transient force relaxation
relation:

P (t) = P0

(
1−

(
t

tk

)2
)
≥ 0 (5)

That is, for t < tk a force relaxation takes place; whereas
for t > t (k), we have P (t) = 0.

POST-BUCKLING SOLUTIONS WITH A
TRANSIENT FORCE RELAXATION

We are interested in solutions of the lateral deflec-
tion Eq. (1) considering the transient force expression
(5). Spatial solutions we herein consider are of the form
ξ (x, t) = ξk (t) exp (ikx); so that Eq. (1) is rewritten in
the form:

ξ̈k (t) + ω2
kξk (t) =

F

tk
, with F = k

d√
U0c

P (t)

ρA

ξk (t)

ξ0
(6)

where ωk = d c k2; and where we considered δ`/` = U0/c.
We first inspect Eq. (6) for t < tk, for which P (t) '

P0 = EA U0/c, and F ' F0 = kd
√
U0c. Considering

solutions of the form ξk = a0 + a1 cosωkt + a2 sinωkt,
with initial conditions, ξk (0) = ξ0 = a0 +a1, and ξ̇k (0) =
ωka2 = 0, we readily find ω2

ka0 = F0/tk. Consider next
t > tk, for which P (t) = 0; and hence F = 0. Solutions
of ξ̈k (t) + ω2

kξk (t) = 0 are of the form ξk = b1 cosωkt +
b2 sinωkt. Finally, at t = tk, we ensure continuity of ξk
and ξ̇k, thus:

a0 + a1 cosωktk = b1 cosωktk + b2 sinωktk (7a)

−a1ωk sinωktk = −b1ωk sinωktk + b2ωk cosωktk (7b)

We consider solutions of this linear system of first order
in tk, which is obtained by a Taylor expansion w.r.t. ωktk.

This yields b1 = ξ0 + O
(

(ωktk)
2
)

and b2 = F0/ωk +

O
(

(ωktk)
3
)

. Whence the final solution:

ξk (t) = ξ0 cos (ωkt) +
F0

ωk
sin (ωkt) (8)

Or equivalently,

ξk (t) = ξ0 cos
(
dck2t

)
+

√
U0/c

k
sin
(
dck2t

)
(9)

Last, we are interested in a relation between the most
amplified wavenumber k and time t when the maximum
amplitude is reached; that is:

∂ξk
∂k

= cdt

(√
U0

c
− 2ck3d tξ0

)
+O

(
k4
)

= 0 (10)

It follows the sought relation:

k =

(√
U0/c

2cd tξ0

)1/3

(11)

Thus, as t increases the wavenumber k at which ξk reaches
a maximum decreases, which justifies a posteriori the
Taylor development in Eq. (10). Expression (11) thus
captures the mode coarsening during the post-buckling
phase. Note that this mode coarsening law is solely con-
strained by the inverse relation, tk ∼ k−1 defined by Eq.
(4), which enters the geometric force relaxation model (5).

MOLECULAR DYNAMICS (MD) INSPIRED
BUCKLING SIMULATIONS

In contrast to earlier approaches which employed molec-
ular chain models within the framework of Rouse dynam-
ics to study the dynamics of Euler buckling instability
[2], the MD-inspired molecular dynamics approach herein
employed solves the equations of motions within the clas-
sical framework of MD-based simulations in either the
micro-canonical ensemble (NVE) or the canonical ensem-
ble (NVT). That is, simulations are based on a discretiza-
tion of a structure in discrete mass points (here, 932 for
wood (lij = 1/931 ` = 0.773 mm), and 564 for pasta
(lij = 1/563 ` = 0.444 mm)); the description of interac-
tions by means of potentials of mean force (PMFs) suit-
able for structural members for both two-body (stretch)
and three-body (bending) interactions [3]; and –for NVT
simulations– a thermalization using the Nosé–Hoover ther-
mostat. The consideration of different thermodynamic
ensembles is essential to appreciate the difference between
the first-order analytical model derived above and the
experimental observation of mode coarsening [see Fig.
3a in main text]. Furthermore, the classical MD/PMF-
based framework permits fracture simulations. Details
are provided below.
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Harmonic Potentials

For the application to buckling problems, we consider
–akin to earlier approaches [2]– harmonic potentials for
both two-body,

Uij =
1

2
εnijλ

2
ij (12)

and three-body interactions,

Uijk =
1

2

−→
ϑ jki · Cijk ·

−→
ϑ jki (13)

where:

• εnij is the elastic energy parameter activated by
two body interactions due to the stretch λij =
(1/lij)

(−→r ij −−→r 0
ij

)
·−→n ij in direction −→n ij = −→r ij/lij

of the link between mass points i and j of length
lij = ||−→r ij ||. For beam time structures, it is readily
recognized that εnij/lij = EA (with E the Young’s
modulus, A the beam’s cross-section).

• Cijk is the second-order tensor of rotational stiffness

activayed by angular variations
−→
ϑ jki :

−→
ϑ jki '

−→r ij ×−→r 0
ik −
−→r 0
ij ×
−→r 0
ik∣∣∣∣−→r 0

ij

∣∣∣∣ ||−→r 0
ik||

(14)

For an initially straight beam with infinite torisonal
rigidity, Cijk is defined in the local coordinate sys-

tem of the three-body link system (−→n ij ,
−→
b ij ,
−→
t ij)

by:

C−1ijk =

(−→
t ij ⊗−→t ij

εbij
+

−→
b ij ⊗

−→
b ij

εtij

)
(15)

where
(
εbij , ε

t
ij

)
are bending energies which are read-

ily available from a comparison with classical beam
theory, namely εbij = EIbb/lij and εtij = EItt/lij ;
with Ibb, Itt the second-order (bending) moments
of geometric inertia Ibb =

∫
A
x2b da; Itt =

∫
A
x2t da

(da = dxbdxt).

In the simulations, we consider E = 2.9 GPa for pasta,
and E = 10 GPa for wood, and determine the section
parameter from the geometric dimensions of the rods,
namely, for the dry paste of circular cross section of
diameter d = 8 mm (see main text), A = πd2/4, Ibb =
Itt = 1

32πd
4; and for the reactangular wood section of

width b = 3.1 mm and height h = 0.53 mm; A = bd, Ibb =
1
12hb

3 and Itt = 1
12bh

3. Buckling deformation, ξ (x, t),
naturally, occurs around the weaker intertia axis, i.e. in
the
−→
t 0− direction.

Cut-Off values

For fracture simulations, we consider a threshold value
for the maximum admissible stretch and curvature varia-
tions. Consistent with fracture processes, these threshold
values relate to the ground state energy, ε0; that is (for a
derivation, see [3]):

λij ≤ λc =

(
2ε0
εnij

)1/2

∼ l−1/2ij (16)

and

||
−→
ϑ jki ||
lij

≤ ϑc
lij

=
λc√
d2b + d2t

=
1

lij

(
2ε0

εbij + εtij

)1/2

∼ l−1/2ij

(17)
where db =

√
Ibb/A and dt =

√
Itt/A stand for the section

radii of gyration. In the dynamic fracture simulations of
the pasta rod, we calibrated the value of the ground state
energy to be ε0 = 0.2 J, which corresponds –at the chosen
discretization level (lij/` = 1/563)– to a limit stretch
of λc = 0.078 61 and a limit angle of ϑc = 0.5◦. For
other discretization levels, the scaling of the cut-off values
with the square root of the bond length lij → l0ij ensures
that such changes do (almost) not affect the formation of
fracture patterns, while respecting the classical scaling of
Linear Elastic Fracture Mechanics (for a discussion, see
e.g. [4]).
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