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I. OVERVIEW

Working with experimental uncertainty often seems su-
perfluous. When someone tells you that the tea is hot,
you do not need them to specify that it is 192±5 degrees
Fahrenheit to know not to drink it quite yet. In sci-
entific studies, however, in order to state whether one’s
results are consistent with another researcher’s results,
he or she must assign an experimental uncertainty to his
or her measurements. Any measurement which does not
include an error estimate is practically meaningless.

Consider the following example of assigning experi-
mental uncertainty. A simple pendulum consists of a
mass hanging from a string of length L. In order to mea-
sure the acceleration of gravity, g, one may perform the
following steps.

1. Measure the period of time, T , for the pendulum
to swing back and forth (one period of oscillation).
T is a directly measured quantity.

2. Measure the length of the string L. L is also a
directly measured quantity.

3. Use the formula

g = 4π2L/T 2 (1)

to calculate the acceleration of gravity g, which is
a derived quantity.

4. Determine the uncertainty in g by

(a) assigning uncertainties to T and L, and then

(b) propagating these uncertainties to find the un-
certainty in g.

This chapter is written to address point number 4.
Specifically, it will explain a general procedure of how
to assign experimental uncertainties to directly measured
quantities and then how to propagate these uncertainties
to the derived quantities.
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II. MEASUREMENT TERMINOLOGY

Let’s begin by defining some terms that appear often
when talking about scientific measurements.

• uncertainty: the degree of inexactness of experi-
mental results

• absolute uncertainty: uncertainty expressed in
same units as result (e.g. The absolute uncertainty
in the length of the string may be 0.5 cm. We say
that δL = 0.5 cm.)

• relative uncertainty: uncertainty expressed as
a fraction of total result (e.g. The relative uncer-
tainty in the length of the string may be 0.01, or
1%, if the absolute uncertainty, δL, is 0.5 cm, and
L = 50cm. We say that δL/L = 0.01.)

• resolution: smallest interval which can be mean-
ingfully read from a device (e.g. A meter stick may
have a resolution of 0.5 mm if it has ticks every
millimeter)

• rounding: omitting digits beyond measurement
resolution (e.g. We may round the measured length
to the nearest half millimeter.)

• precision: the number of digits we can quote in
our result (e.g. We might quote the length of a
string as L = 42.5 cm, rather than 42.52 cm, if the
resolution of the meter stick is only 0.5 cm.) The
last recorded number is considered doubtful.

• significant figures: the number of trustworthy
digits in a number. (e.g. The number L = 42.5 cm
has three significant figures.)

• systematic error: mistake in the way the exper-
iment was done (e.g. Perhaps the meter stick is
warped by moisture and hence we underestimate
any measurement we take with it.)

• accuracy: the degree to which our experiment is
free of error (e.g. Our measurement may be inac-
curate if our meter stick is bent.)

• mean: the average of N measured quantities

T =
1

N

N∑
i=1

Ti (2)
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• standard deviation: tells us about the average
distance that any particular data point lies from
the mean

σ =

√√√√ 1

N − 1

N∑
i=1

(
Ti − T

)2
(3)

If the measurements scatter according to what is
called a ”normal distribution”, then the probability
that any measurement, for example a measurement
of the period of a single oscillation, T , lies within
one standard deviation of the mean value, T , is
67% or within two standard deviations of the mean
value is 95%.

• variance: the square of the standard deviation:

var = σ2 (4)

III. COMPUTATIONS AND SIGNIFICANT FIGURES

The rightmost figure which is recorded in a result is
considered to be doubtful. The following should be ob-
served when manipulating such numbers.

• When adding or subtracting numbers, drop any fig-
ure in the sum to the right of the column containing
the first doubtful figure. For example

104.4 + 40.01 = 144.4

• When multiplying or dividing numbers, keep one
more significant figure than the smallest number of
significant figures in the factors.

1.111× 7.7 = 8.55

IV. DIRECTLY MEASURED QUANTITIES

There are two ways of assigning experimental uncer-
tainty to directly measured quantities.

1. Estimation The experimental uncertainty, σ, may
be estimated from the resolution of the measuring
apparatus. For example, the period of one oscil-
lation of a pendulum as measured by a stopwatch
might be T = 1.325± 0.005 cm1.

1 By measuring T N times, the uncertainty, σ is reduced to

σ =
σ

√
N
. (5)

2. Repeated measurement Alternatively, the un-
certainty, σ, may itself be obtained by repeated
measurements. For example, the period of one os-
cillation of the pendulum might be measured five
times. In this case, the uncertainty is not as-
signed first, based on the resolution of the stop-
watch. Rather, the standard deviation, defined be-
low, serves as the experimental uncertainty.

Example

As an example of determining uncertainty in a directly
measured quantity using repeated measurement, consider
five measurements of the period, T , of oscillation of a
simple pendulum:

trial Ti (Ti − T ) (Ti − T )2

1 1.325 0.004 0.000016
2 1.303 -0.018 0.000324
3 1.331 0.010 0.000100
4 1.328 0.007 0.000049
5 1.318 -0.003 0.0000090

T = 1.321s

σ =

√
0.000498s

4
= 0.0112s

σ =
0.0112s√

5
= 0.00501s

T = 1.3210± 0.005s

V. DERIVED QUANTITIES

Usually in an experiment, the quantity of interest is
found by manipulating directly measured quantities ac-
cording to some mathematical formula. How does one
assign an uncertainty to these derived quantities? Shown
in Tab.I are some straightforward rules for determining
the uncertainty in derived quantities from uncertainties
in directly measured quantities. For a more thorough ex-
planation of the propagation of experimental uncertainty
in derived quantities, see, for example, (?)

Examples

1. The diameter of a circle is given as D = 40.1 ±
0.2cm. Find both its circumference, C, and the
uncertainty in the circumference, δC.

C = π ×D = π × 40.1cm = 126.0cm
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operation rule
multiplication by constant K absolute uncertainty
Q = Kx δQ = Kδx

relative uncertainty
δQ
|Q| =

δx
|x|

raising to a power relative uncertainty

Q = Kxn δQ
|Q| = n δx|x|

addition or subtraction absolute uncertainty

Q = x± y ± . . . δQ =
√

(δx)2 + (δy)2 + . . .
multiplication or division relative uncertainty

Q = xy...
u...

δQ
|Q| =

√(
δx
x

)2
+
(
δy
y

)2
+
(
δu
u

)2
+ . . .

arbitrary function relative uncertainty

Q = f(x) δQ =
(
|df |
|dx|

)
δx

TABLE I Rules for uncertainty propagation.

The operation we use to compute the absolute un-
certainty in circumference is multiplication by a
constant with K = π.

δC = π × δD = π(0.2cm) = 0.63cm

Since the circumference has only one significant fig-
ure to the right of the decimal, we can round this
to

δC = 0.6cm.

We can also compute the relative uncertainty

δC

C
=
δD

D
=

0.2cm

40.1cm
= 0.0050 = 0.50%.

From the relative uncertainty we can compute the
absolute uncertainty

δC = 0.0050× 126.0cm = 0.63 ' 0.6cm.

Notice that this gives the same result as our previ-
ous calculation of the absolute uncertainty.

2. Find the area, and the uncertainty in the area, of
the circle from the previous example.

A =
π

4
×D2 =

π

4
× (40.1cm)2 = 1263cm2

The operation we use to compute the relative un-
certainty is raising to a power with n = 2.

δA

A
= 2× δD

D
= 2× 0.2cm

40.1cm
= 2× 0.010.

From the relative uncertainty in A we may compute
the absolute uncertainty

δA = 0.020× 1263cm2 = 25.26cm2 ' 25cm2.

3. The length and width of a rectangle are given as
L = 85.0± 0.2cm and W = 29.5± 0.2cm. Find the
perimeter P and the uncertainty δP .

P = 2(L+W ) = 2(85.0cm + 29.5cm) = 229.0cm.

The operations used to compute the uncertainty
in perimeter are addition and multiplication by a
constant. First, we find the uncertainty in (L +
W )using the addition rule.

δ(L+W ) =
√

(δL)2 + (δW )2 =
√

(0.2cm)2 + (0.2cm)2 = 0.28cm.

Then we may find the uncertainty in the perime-
ter using the multiplication by a constant rule with
K = 2.

δP = 2× δ(L+W ) = 2× 0.28cm = 0.56cm ' 0.6cm.

4. Find the area, and the uncertainty in the area, of
the rectangle from the previous example.

A = L×W = 85.0cm× 29.5cm = 2508cm2.
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The operation used to compute the relative uncer-
tainty is multiplication.

δA

A
=

√(
δL

L

)2

+

(
δW

W

)2

=

√(
0.2cm

85.0cm

)2

+

(
0.2cm

29.5cm

)2

From the relative uncertainty in A we can compute
the absolute uncertainty.

δA = 0.0072× 2508cm2 = 18.0cm2 ' 18cm2.

5. Exercise: The length of a simple pendulum is given
as L = 42.5 ± 0.5cm. The period of oscillation is
given as T = 1.321 ± 0.007s. Find the accelera-
tion of gravity, g, and the uncertainty, δg, using
Eq.1. You will need to use the rule for raising to a
power, then for division, then for multiplication by
a constant.


